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1. INTRODUCTION

There are any number of situations where one would like to obtain
information about the behavior of the crosswind along a path. One method
of remote sensing that offers promise is that of optical scintillations
using correlation techniques.

Provided that the medium is weakly turbulent, then it is possible
to write down a nonlinear integral equation between the unknown cross-
wind profile and the space-time covariance function of the log-amplitude

of the incident laser radiation.l Lee and Harp1 have shown how to con-
vert the nonlinear integral equation into a linear integral equation,
and working only with the slope at zero time delay of the space-time
covariance function of the signal.

Lawrence, Ochs, and Clifford,2 in an important paper, developed an
experimental procedure, utilizing the linear integral equation approach,
whereby they measured an averaged crosswind, the average taken with re-
spect to the path-weighting function. Furthermore, they are able to make
measurements effectively in real time. In view of their success, it is
now an opportune time to consider the inversion problem of reconstruct-
ing the crosswind profile itself via measurements of the correlation
slope.

The solution of the linear integral equation, Eq. (2) or Eq. (9),
is an inverse problem. Inverse problems are known to be ill-posed (i.e.,
numerically unstable) and any inversion method must be capable of a rea-

< s : ‘ 3,
sonably robust inversion in the presence of noise. i We propose to use
the method of singular value decomposition to invert the integral equa-
tion in the presence of noisy input data.

There have been previous inversion studies of Eq. (2), Peskoff5
carried out an analytical inversion of the linear integral equation
which, although mathematically correct, suffers from the fact that his
path must be infinite in order to perform certain of the analytical
manipulations. A second attempt to invert the integral equation was
ZR.W. Lee and J.C. Harp, "Weak Scattering in Random Media, With Applica-

tions to Remote Probing," Proc. IEEE, 57, 375-406.

2 v 3oy .
R.S. Lawrence, G.R. Ochs, and S.F. Clifford, '"Use of Scintillations to

Measure Average Wind Across a Light Beam," Appl. Opt., 11, 1972, 239-243.

3 3 ‘ .
M.M. Laventiev, Some Improperly Posed Problems of Mathematical Physics,

(Springer-Verlag, New York, 1967).
4

A.N. Tikhonov and V.Y. Aresenin, Solutions of Ill-~Posed Problems,
(Halsted Press, New York, 1977).

b > 5 v "
A.Peskoff, "Theory for Remote Sensing of Wind-Velocity Profiles,"” Proec.
IEEE, 59, 1971, 324-325.




made by Shen.b using some naive numerical techniques. Unfortunately,
he did not realize that the problem was ill-posed; consequently, his
results and conclusions are misleading. A substantial advance was made

by Heneghan and Ishimaru7 who, recognizing that the problem was ill-
posed, employed an inversion scheme dependent on statistical regulariza-

tion.8 The relation between their method/results and our method/results
i1s briefly discussed in Section IV.

I1. PRELIMINARIES

The space time covariance function and the crosswind profile are
related to each other by a complicated nonlinear integral equation whose
explicit form we need not quote, see Eq. 5 of Ref. 2. Following the

suggestion in Ref. 1, the nonlinear integral equation can be made linear
(in the velocity profile) by differentiating it with respect to the time
covariance function and then setting the time delay equal to zero.

The resulting linear integral equation relating the slope of the
space-time covariance function at zero time lag and the crosswind com-

ponent as a function of the separation between detectors isz
L 2
]0 dzC (2)W(Z,0) viz)

/" a6 2 laliadl
0 n

where z = distance along sight path (0,L)
v(z) = crosswind component

E(po)

1}
—_
—

=
C;(z) = refractive index structure coefficient

p = distance between detectors
E(p) = slope with respect to time of space time covariance func-
tion at zero time lag
W(z,p)= path-weighting function,
See Fig. 1 for schematic of the geometry. We caution the reader that
this expression is valid only in a weakly turbulent medium.

°L.C. Shen, "Remote Probing of Atmospheric and Wind Veloeity By Milli-
meter Waves," IEEE Trans. Antennas and Prop., AP-18, 1970, 493-497.

e § . . . ve g .
J.M. Hemeghan and A. Ishimaru, "Remote Determination of the Profiles of

J
the Atmospheric Structure Congtant and Wind Velocity Along a Line of
Stght Path by a Statistical Inversion Procedure," IEEE Trans. Antevmas
and Prop., AP-22, 1974, 457~464.

8 i s . ¢ . g i
J.N. Franklin, "Well-Posed Stochastic Extensions of Ill-Posed Linear

Problems," J. Math. Anal. Appl., &1, 1970, 682~716.
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Figure 1. Geometry of bistatic configuration.




We are particularly interested in the path uniform case [Ci(z) =

constant | characteristic of horizontal propagation.* Equation (1) then
becomes

L
]0 dzW(z,p)v(z)

E(p) = -
IL dz[z(1-2)]°/®
0

(2)

The path-weighting function for a spherical wave, assuming that
the refractive index size spectrum uses the inertial subrange assump-

tion,9 takes the form

= = 3 2 =l ) 2
W(z.p) = (2.33)(k1)> ]0 T g T LU R o

2
2J (zDK/2L) o fexx s
i (zDK/2L) i x

where k = wavenumber of laser radiation and D is the diameter of the two
detectors. The basic point to emphasize is that the refractivity spec-

-11/3
trum is taken as proportional to K /J. The degree to which departures

from the power 11/3 influence the final results is not undertaken in
this paper, but it should be kept in mind that 11/3 is a useful working
number and not an axiomatic statement.

At this stage it is convenient to convert to dimensionless vari-
ables:

2% % ; B = E;i377§.= %

s = KO % « i a = 2;2?173-= % (4)
Here

i ()‘L)I/Z (5)

is the Fresnel zone number which has the dimensions of a length.

*See, however, the qualifying remarks in Seec. IV.

9 4
V.I. Tatarskii, "The Effecte of the Turbulent Atmosphere on Wave Propa-
gation," (US Dept. of Commerce, Springfield, VA, 1971).
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The path-weighting function W(z,p) can be rewritten as

s/6 F1/3

=73 WI (Z,8) (6)
A

W(Z,B) = (2.33) (2n)

where NI(Z,S) 1s dimensionless

-5/3 .2 lza-zy 271 |¥)(%s/2) ; J. (8Zs) (7)
wl(~.8) = ]: dss sin [~ ol ] O 1

The denominator of Eq. 2 can be evaluated in terms of gamma func-
tions

: (%) ()
dz{a(1-2)1%% « (/3 XS] (6] (8)
0 r (fi)

; 3

Thus the dimensionless form of Eq. (2) is

1
E(B) = % ]; dzW, (Z,8)v(Z) o

where

2.33)2n)>° 1 (%%)

s B 0)
g — il 48.8938 . (1
6 6

The integral on the right-hand size has dimensions (length/time) since

v(Z) is a velocity. Hence, E(8) has dimension (rime).l as 1t should.
We caution the reader that E(8) and v(I) must be measured in the same
time units. Equation (9) is an integral equation of the first kind for
the unknown v(Z) in terms of the measured E(8) and known W(Z,8).

IIT. INVERSION VIA SINGULAR VALUES

Given this basic preliminary information, we now pass on to the in-
version of Eq. (9) using the method of singular value decowposition.

The integral equation, Eq. (9), was first discretized using N point
Simpson's rule

N
nzl HWER L2 v(Z) = E(8)) (11)

11




Ao

where “n are the weight factors and :n the quadrature points. Since we

generally want more measured values than reconstruction points, N, we
let m=1, 2, ..., M vwhere M > N. When Eq. (11) is converted to matrix
tfrom, we have

AX = b (12)

where

A
mn

A is size M x N (M rows and N columns), x is N x 1, and b is M x 1.
Equarion (12) 1s the basic equation for the inversion.

The matrix A can be written in the following real form (singular
value decomposition)

K- WY { iy (13

Vis an N x N

. _ ‘s s
where U is an M x M orthogonal matrix (UU = U U

orthogonal matrix. The matrix ! is M x N with non-negative elements on
the main diagonal and zeros elsewhere

)
; (14)

Fhe o's are t rmed the singular values of A and are the non-negative

. -~ ’A . . . ~
square roots ¢ the eigenvalues of A A (this is the mathematical defini-

tion of the o'y, but they are never evaluated from the definition).

12




The o's can be ordered so that o, >0, > . . ., > o, >0, if rank of

s [E s N .
A = k(sN), then Ost T pun ® o s s B Oy ™ 0. The columns of U are the

eigenvectors of AA*, while the columns of V are the eigenvectors of
A’A : . . .
A 'A. Formal proofs of the singular value decomposition of a matrix can

be found in Forsyth and Moler,10 or Lawson and Hanson.11

The solution to the minimal least squares problem posed by Eq. (12)
is

b (15)

ae ~
where A 1s the pseudoinverse of A given by

~

PR T (16)

+ . .
Here ) is the N x M matrix

o~
L}
f=)

(17)

where

+ §
o} =~l— if o >0
)1 R n

=

(0 BES,  JR E (18)

The solution becomes clearer if the right-hand side of Eq. (15) is

written out explicitly.

JOC.B. Moler and G.E., Forsyth, Computer Solution of Linear and Alge-
braic Systems, (Prentice-Hall, Englewood Cliffs, NJ, 1967).

ZIC.L. Lawson and R.J. Hanson, Solving Least Squares Problems,

(Prentice-Hall, Englewood Cliffs, NJ, 1974).

13
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vt

PO

Ak
x=) ——v , k<N (19)

-~

where u and % denote the nth column vectors of U and V corresponding

to o_. The sum only runs over n = 1 to k, where o, is the smallest

K -
nonzero singular value. Equation (19) shows that the matrix x of rank
kK (sN) is a linear combination of k matrices of rank one.

The ill-posed nature of the inversion is directly evident. The
smaller singular values entering into the denominator tend to greatly
magnify any error in the measured data vector b, thereby resulting in a
spurious solution. To alleviate this, the expansion is terminated be-

fore the contamination due to the numerically small singular values sets
Y
in. One way to achieve this, Blake and Barakut,l’ is to to set

+ 1 e
g = — if g. =g
n o n
n
= ( 1 8. Se (20)

~— >> noise. (215

Physically this procedure has the effect of ignoring high frequency com-

ponents of b which are the main cause of the numerical instability.
Nevertheless this procedure entails a somewhat arbitrary judgment as to

when to terminate the summation. Unfortunately so do any other criteria.

An added advantage to the use of singular values is that the singu-
lar values are very stable to perturbations in the matrix elements, in
that perturbations of the matrix elements produce perturbations in the
singular values of the same order of magnitude.

In applying the singular value decomposition to our problem, we
used the algorithm described in Reference 11.

Given that we have an inversion algorithm we must now consider the
following problem. The distance B between detectors in Eq. (9) runs
over the range (0,«)., In order to effect the inversion (by singular
value decomposition or any other method), one must let the spacing

19

12 - 7 : . . 2 o - a
J. Blake and K. Barakat, "The Inveraion Problem for Two Fold Photo-

electron Counting Statistice," Cand. J. Phye., &3, 1975, 1215-1220.

P
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between detectors become infinite, at least in principle! Obviously
this cannot be done experimentally so that the question to be answered
is: '"What is the acceptable upper limit on B (call it Bmux) tor which
the inversion works in the noiseless case?"

In order to answer this question, we first consider the direct pro-
blem: given the crosswind protfile determine E(8). This is simply the
integration of v(Z) over the path with respect to the path-weighting
tunction W(Z,8).

Before continuing these calculations, we choose representative
values of L, D, and )\

L= 1.6 ¢ 105 cm = 1.5 km

D= 1,27 ¢cm

A= 6.33 + 10" em

Based on these values we have

0,412

-
i

F=308cm .

These values will be used for all numerical calculations in this paper.

The behavior of the path-weighting function W(Z,8) is shown in Fig,
3 Evaluation of W(Z,R) was by high order quadrature sutticient to
guarantee four-digit accuracy. As the detector spacing 8 is increased,
W selectively accentuates various parts of the optical path with large
spacings concentrating on the end near the laser. Incidentally, in a
working system the detectors would remain fixed and the apparent detector
separation would be done by scaling the optics,

We employed

n

v(Z) = 650 ¢ ° cos(2n2) em/sec (22)

650 ¢ © cos(4n2) cm/sec (23)

15




w(z,8)cm
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102
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ONIO

Figure 2. Behavior of W(Z,2) for different values of g1 =+o= & = 0.3,
- R ]. .- [(22‘ - {{:3.
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as test crosswind profiles. Recall that 1 knot = 50 cm/sec. The resul
tant shapes of the slope of the space-time covariance function at zero
time lag as a function of detector separation g, E(8), are shown in Fiy.
3. Needless to say they display a complicated behavior for small 8, but
then tend slowly to zero in monotone fashion for large 8. Large number
of sign changes in v(Z) manifest themselves in a more complicated be-
havior of E(B) for small B. Several other crosswind profiles were run:
they all indicate that ultimately E(8) tends to zero as £ is increased.

Based on this information, we set B = Jand 8 = 4, then in
max max

verted the profile given by Eq. (22) using a unitform spacing of AR 0.1
(M = 31) and requiring N = 21. The inversions are shown in Fig. 4 for

Bosin ™ 3 (open circles) and . (solid circles). Both yield excel-

lent fits to the profile for Z > 0.4; however for Z < 0.4 the inversion

points ftor R ¥ 3 oscillate about the true profiles whercas those tor
a

B ™ 4 are still very good. It is an artifact of singular value de-

composition that the inversion points for Z = 0, 1 are always zero,

There are, of course, 21 singular values since N = 21. Values of t“m.‘\> {

did not vyield reconstruction significantly better than those for

dm1‘ = 4. On the other hand, profiles inverted tor ﬁmwx < 3 were almost

useless due to wild oscillations. At least with respect to the profiles

we inverted, it appears that ﬁm1x = 4 is a reasonable compromise between

accuracy and physical realizability,

tven in the '"noiseless”" case we do not employ all 21 singular values

in the reconstruction; rather we employ 19 singular values because 94,

and 05 are enough in error to cause serious distortions in the recon-
-

struction of the crosswind prorile.

In order to mimic the experimental situation, we add signal depen-
dent noise to E(B) in the following fashion:

E(8) = (1 + Su)E(R)

g (24)
noisy

noiseless

Here § is a small number and u 1s a random variable governed by a rec-
tangular probability density function

f(u)

1
to] —
@
1
—
”
b =3
/2
—

u
=

elsewhere . (25)




Figure 3. Slope at zero time delay, E(g), as a function of detector
separation g for crosswind profile given by Eq. (22) (solid
line) and by Eq. (23) (dotted line).

18




100 v(z)cm/sec

Figure 4. Inversion of v(z) corresponding to Eq. (22) by singular value
decomposition using 19 o's in the noiseless situation: solid
is actual profile, open circles correspond to B " 3 and
solid circles to Soax * 4.
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A typical inversion realization of the profile given by Eq. (22)
is shown in Fig. 5. The amount of 'noise'" added to E(8) via Eq. (24)
was 5% (i.e., § = .025). According to the recipe quoted in Eqg. (21),
this means that we should use lo singular values in the reconstruction
of the profile.

A second profile, Eq. (23), was also reconstructed and the results
are shown in Fig. 6. The solid circles are the reconstructed values of
the profile in the noiseless case with 8 = 4. The solid triangles are
the reconstructed values of a typical sample realization with 3% noise
(i.e., & = ,015) added to E(8). The results speak for themselves,

As we noted in the introduction, Heneghan and Ishimaru' used an in-
version scheme dependent on statistical regularization. It is difficult
to compare their results since most of their calculations are not ad-
dressed to the same problem with which we are concerned, namely the
point-wise inversion of v(I). However, in Fig. 6 of their paper they
show an inverted velocity profile using data obtained from ““rpla which
is similar to that of Fig. 5 of the present paper.

IV.  COMMENTS
The previous calculations have demonstrated that it is possible to
obtain the crosswind protfile using the correlation slope method via
singular value decomposition, when Ci(:) 1s constant over the path,
However, as a reviewer has pointed out, typical spatial and temporal
fluctuations in Ci along the path can overwhelm the effect of W (z,,)

by just varying receiver separation. It is suggested that one might
overcome some of the problems by using higher order receiver spatial

<3 : : : e 14
filtering techniques such as described in Cliftford, et al and Ochs,

0.0, Harp, "A Line-of-Sight Propagati for Resolving th
tomg and Turbulent Structure of the # Set. Report N 5
Radiocscience Lab, Stanford Imiv., SEL-7 a971.
:‘;‘, W Vi e o I - )} ¢ 24 T Wiy SNRE STA T b S TAD Lral™
S.F. Clifford, G.R., Oche and T. Wang, d Senging b aem
ing the Seinttllationa of a Random S s 8y 1978

2844=-2850,

0
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100 v(z)cm/sec

Figure 5. Inversion of v(z) corresponding to Eq. (22) using 16 o's 4% :

noise in E(8), faax * &
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100 v(z)cm/sec

Figure 6. Inversion of v(Z) corresponding to Eq. (23). Solid line is
actual profile, solid circles correspond to noiseless situa-

tion with Baax " 4, solid triangles correspond to 3% in

E(8) with Boax 4,

22
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et al, Lee.lb. Such an analysis has been initiated by one of us (RB).

See also Leuenberger, et al.17

It is tempting, when Ci(z) varies over the path, to invert the in-
tegral equation relating to Ci to the log-amplitude of the covariance
for zero time delay using the inversion scheme (e.g., Reference 18)
which will guarantee Ci > 0. The resultant Ci could then be substituted
into Eq. (1) for the crosswind profile. Unfortunately, this approach
will fail because, as Strohbehn19 has shown, one cannot distinguish be-

o
tween a C; layer and a change in the turbulence spectral power law,
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